An axial-to-axial chirality transfer strategy for atroposelective construction of C–N axial chirality

نویسندگان

چکیده

•Unique axial-to-axial chirality transfer for C–N axial construction•Ability to assemble two vicinal and remote stereogenic axes•Step-economic scalable synthesis of enantioenriched phenanthridinones•Broad scope, good yields, excellent enantioselectivities Axial widely exists in bioactive natural products, pharmaceuticals, chiral materials, ligands catalysts asymmetric catalysis. As such, the efficient, modular, enantioselective assembly these scaffolds from readily available starting materials represents one most challenging yet fascinating directions synthetic organic chemistry. In sharp contrast well-developed C–C chirality, atroposelective construction has been less investigated because innate higher degree rotational freedom latter. Herein, we report an efficient atropisomers via palladium/chiral norbornene cooperative The key success is unique process, which scarcely reported. This strategy expected inspire future studies find applications broad research fields. axially skeletons are ubiquitous ligands. However, their remains a formidable challenge low configurational stability compared with that atropisomers. general method accessing through based on obtained originates preformed transient high fidelity. A variety phenanthridinones (44 examples, up >99% ee). can be applied axes double C–H arylation or further transformation products diastereoinduction. Additionally, reaction mechanism process elucidated by density functional theory calculations. know, atropisomers, e.g., biaryls, prevalent privileged frameworks, well developed past decades.1Liao G. Zhou T. Yao Q.J. Shi B.F. Recent advances biaryls transition metal-catalysed functionalization.Chem. Commun. 2019; 55: 8514-8523Crossref PubMed Google Scholar, 2Wang Y.B. Tan B. Construction compounds organocatalysis.Acc. Chem. Res. 2018; 51: 534-547Crossref Scopus (334) 3Kumarasamy E. Raghunathan R. Sibi M.P. Sivaguru J. Nonbiaryl heterobiaryl atropisomers: molecular templates promise atropselective chemical transformations.Chem. Rev. 2015; 115: 11239-11300Crossref (326) 4Wencel-Delord Panossian A. Leroux F.R. Colobert F. new concepts stereoenriched biaryls.Chem. Soc. 44: 3418-3430Crossref Scholar siblings also commonly found products,5Bringmann Tasler S. Endress H. Kraus Messer K. Wohlfarth M. Lobin W. Murrastifoline-F: first total synthesis, atropo-enantiomer resolution, stereoanalysis N,C-coupled biaryl alkaloid.J. Am. 2001; 123: 2703-2711Crossref (146) medicinal chemistry,6Clayden Moran W.J. Edwards P.J. LaPlante S.R. atropisomerism drug discovery.Angew. Int. Ed. 2009; 48: 6398-6401Crossref (440) recently catalysis as ligands7Mino Tanaka Y. Hattori Yabusaki Saotome Sakamoto Fujita Synthesis optical resolution aminophosphines C(aryl)?N(amine) bonds use catalysis.J. Org. 2006; 71: 7346-7353Crossref (55) (Figure 1A). explored, probably due lower rotation barrier around bond.3Kumarasamy Scholar,8Kitagawa O. Chiral Pd-catalyzed syntheses various N–C applications.Acc. 2021; 54: 719-730Crossref (36) 9Li Z. Yu Asymmetric atropisomeric axis.Sci. Sin. Chim. 2020; 50: 509-525Crossref (3) 10Takahashi I. Suzuki Kitagawa N?C axis.Org. Prep. Proced. 2014; 46: 1-23Crossref (63) 2002, Taguchi11Kitagawa Kohriyama Taguchi Catalytic optically active anilides N-allylation Pd-tol-BINAP catalyst.J. 2002; 67: 8682-8684Crossref (78) Curran12Terauchi Curran D.P. N-Allylation palladium catalysts: catalytic anilides.Tetrahedron: Asymmetry. 2003; 14: 587-592Crossref (83) groups independently reported (Pd)-catalyzed reaction, albeit unsatisfied enantioselectivities. Since then, number approaches have synthetically 1B). Excellent stereoselectivities were means N–H functionalization anilides, including N-arylation (Buchwald-Hartwig amination),13Kitagawa Takahashi Yoshikawa Efficient reaction.J. 2005; 127: 3676-3677Crossref (102) Scholar,14Kitagawa Tanabe Morita Dobashi Highly anilide derivatives N-arylation: conformational analysis application enolate chemistry.J. 128: 12923-12931Crossref (122) intramolecular Ullmann-type amination,15Fan X. Zhang Li C. Gu Enantioselective Cu-catalyzed adjacent coupling.ACS Catal. 9: 2286-2291Crossref phase-transfer-catalyzed N-alkylation,16Shirakawa Liu Maruoka o-iodoanilides phase-transfer catalyzed alkylations.J. 2012; 134: 916-919Crossref (115) cinchona alkaloid-catalyzed N-allylation.17Yang G.-H. Zheng Cheng J.-P. phosphamides N-allylic alkylation.ACS 10: 2324-2333Crossref (26) 18Lu Ng S.V.H. Lovato Ong J.Y. Poh S.B. X.Q. Kürti L. Zhao Practical access sulfonamides amino phenols organocatalytic N-alkylation.Nat. 3061Crossref (47) 19Li S.L. Yang Wu Q. H.L. J.P. Atroposelective allylic alkylation achiral Morita-Baylis-Hillman carbonates.J. 140: 12836-12843Crossref (69) directly constructing bond developed.20Xia An Xiang S.H. Wang phosphoric acid C-H amination arenes.Angew. 59: 6775-6779Crossref (67) 21Frey Malekafzali Delso Choppin Wencel-Delord aryl amination.Angew. 8844-8848Crossref (37) 22Bai H.Y. F.X. T.Q. Zhu G.D. Tian J.M. Ding T.M. Chen Z.M. S.Y. nonbiaryl naphthalene-1,2-diamine N-C direct amination.Nat. 3063Crossref (40) 23Brandes Bella Kjaersgaard Jørgensen K.A. Chirally aminated 2-naphthols--organocatalytic non-biaryl Friedel-Crafts 45: 1147-1151Crossref (206) Other effective included assembling de novo aromatic ring24Wang Zhong Lin three-component cascade reaction: N-arylindoles.Angew. 58: 15824-15828Crossref (57) 25Zhang Ma D.J. arylpyrroles Paal-Knorr 2017; 139: 1714-1717Crossref (172) 26Wang S.C. Hu Y.M. Bronsted acid-catalysed arylquinazolinones.Nat. 8: 15489Crossref (75) 27Tanaka Takeishi Noguchi rhodium-catalyzed [2+2+2] cycloaddition 1,6-diynes trimethylsilylynamides.J. 4586-4587Crossref (185) desymmetrization prochiral anilides.28Gu X.W. Sun Y.L. Xie J.L. X.B. Xu Yin G.W. K.F. L.W. Stereospecific Si–C coupling control palladium-catalyzed hydrosilylation maleimides.Nat. 11: 2904Crossref (27) 29Zhang J.W. J.H. X.Y. Discovery enantiocontrol urazoles tyrosine click reaction.Nat. 2016; 7: 10677Crossref (86) 30Zhang Feng N-arylmaleimides: both atom chirality.Chem. 10554-10557Crossref 31Di Iorio N. Righi P. Mazzanti Mancinelli Ciogli Bencivenni Remote chirality: aminocatalytic N-arylmaleimides vinylogous Michael addition.J. 136: 10250-10253Crossref (93) Recently, emerged powerful approach chirality.32Yao P.P. Y.J. Teng M.Y. Hong Pd(II)-catalyzed olefination.J. 142: 18266-18276Crossref (39) 33Ye C.X. Han Ivlev Houk K.N. Meggers N-arylpyrroles chiral-at-rhodium catalysis.Angew. 13552-13556Crossref (30) 34Zhang Q.-J. Liao H.-M. et al.Enantioselective featuring pentatomic heteroaromatics alkynylation.ACS 1956-1961Crossref (113) 35Li Yan Guo Jiang N-aryloxindoles dual activation.Angew. 6732-6736Crossref (88) 36Diener M.E. Metrano A.J. Kusano Miller S.J. 3-arylquinazolin-4(3H)-ones peptide-catalyzed bromination.J. 137: 12369-12377Crossref (140) 37Crawford Stone E.A. Sigman M.S. Parameterization peptide-based bromination 3-arylquinazolin-4(3H)-ones.J. 868-871Crossref Despite significant achievements, there still room improvement regard efficiency, substrate generality, product diversity. Therefore, developing more versatile straightforward methods using construct enantiopure highly desirable task. Palladium/norbornene (Pd/NBE) catalysis, namely Catellani reaction,38Catellani Frignani Rangoni complex cycle leading regioselective o,o?-disubstituted vinylarenes.Angew. 1997; 36: 119-122Crossref (483) enables simultaneous at ortho- ipso-positions halides, offering polysubstituted arenes.39Wang Dong catalysis.Chem. 119: 7478-7528Crossref (208) 40Cheng H.G. Palladium(II)-initiated Catellani-type reactions.Angew. 5832-5844Crossref (96) 41Liu Z.S. Gao Alkylating reagents employed reactions.Chem. Eur. 24: 15461-15476Crossref 42Della Ca’ Fontana Motti Pd/norbornene: winning combination selective activation.Acc. 49: 1389-1400Crossref (371) 43Ye Lautens Palladium-catalysed norbornene-mediated arenes.Nat. 863-870Crossref (310) 44Catellani Della sequential reactions involving palladacycle-directed steps.Acc. 2008; 41: 1512-1522Crossref (417) our group Pd/chiral NBE? catalysis.45Liu Z.-S. Hua Tang Shang al.Construction catalysis.Nat. 3: 727-733Crossref (46) On basis this chemistry, envisioned chirality. shown Figure 1C, simple iodide (1) used substrate, 2,6-disubstituted bromide tethered amide (2) utilized arylating terminating reagents. oxidative addition, insertion, activation leads aryl-NBE? palladacycle (ANP) A, then oxidized 2. resulting PdIV subsequently undergoes reductive elimination ?-carbon form intermediate: Pd Complex B eventually final phenanthridinone 3 intermediate C, involves amidation afford desired alongside axis (B C) (3). Although it strategically promising, several challenges need addressed. First, identification suitable mediator ensure reactivity enantioselectivity crucial. date, rarely studied.45Liu 46Zhou al.Kinetic tertiary benzyl alcohols https://doi.org/10.1002/anie.202103428Crossref (13) 47Feng Bao S.-J. Lan Song monophosphine oxides.CCS 377-387Crossref (16) 48Shi Herron A.N. Shao J.Q. meta-C–H mediator.Nature. 558: 581-585Crossref (129) 49Li Palladium-catalyzed annulation between iodides racemic epoxides cocatalyst.Org. Front. 5: 3108-3112Crossref Second, envisaged should occur fidelity preserve enantiopurity products. strategies, such central-to-central, central-to-axial, axial-to-central transfer, already become tools stereochemistry synthesis.50Campolo D. Gastaldi Roussel Bertrand Nechab Axial-to-central cyclization processes.Chem. 2013; 42: 8434-8466Crossref (99) 51Alonso Quirós M.T. Muñoz Chirality intermolecular addition allenes.Org. 1186-1204Crossref 52Yang central-to-axial conversion.Chem. Asian 15: 2939-2951Crossref (21) 53Nguyen T.T. Traceless point-to-axial exchange biaryls/heterobiaryls.Org. Biomol. 17: 6952-6963Crossref Surprisingly, reported, factors remain largely unexplored, believe owing dynamic nature chirality.54Mori Ohmori Stereochemical relay styrenes: antibiotic TAN-1085.Angew. 5633-5637Crossref (56) Scholar,55Liu Kee C.W. Leow Loh W.-T. C.-H. Brønsted base-catalyzed tandem isomerization-Michael alkynes: oxacycles azacycles.Adv. Synth. 2010; 352: 3373-3379Crossref (49) encouraging demonstrate way. Lastly, performed under mild conditions avoid potential racemization vulnerability. To test hypothesis, initiated model 2-iodotoluene (1a) (2a) reactants 2). delight, conditions45Liu Scholar—Pd(OAc)2 catalyst, (1S,4R)-2-ethyl-ester-substituted (N1? [99% ee]) mediator, heating 105°C—the 3a was indeed yield (95%), only 24% ee. preliminary result indicates previous design feasible. its temperature (105°C). After extensive optimization parameters, lowering 70°C (see Table S1 details), afforded (91% yield, 92% ee) optimal 2, entry 1). Control experiments conducted elucidate role each component conditions. Not surprisingly, phosphine ligand, base all essential (entries 2–5). PdCl2 instead Pd(OAc)2 resulted dramatically decreased (entry 6). Tri(2-furyl)phosphine (TFP) better ligand than PPh3 terms efficiency 7). When methyl ester-substituted (N2?) N1?, dropped 76% 8). C2-amide substituted (N3?) proved inferior stereoselectivity 9). stronger Cs2CO3 K2CO3, 10). Besides MeCN, DMF solvent 11). Notably, loading N1? could reduced 25 mol % without obvious erosion enantioselectivity, although concentration longer time required 12). With hand, set out explore scope 3). principle, different electronic properties tolerated, providing moderate yields (42%–96%) (87%–98% ortho-substituents compatible, ethyl (3b), tert-butyldimethylsilyl (TBS)-protected hydroxymethyl (3c), ester (3d), phenyl (3e), fluoro (3f), benzyloxy (3g), methoxy (3h). Moreover, bearing additional substituents other positions examined, alkyl (3i 3k), (3l), chloro (3j), bromo (3m), (3n), (3o) 3- 4-positions amenable. bicyclic (3s–3u) polycyclic (3v) investigated, they (91%–96% densely functionalized substrates led penta-substituted aromatics (3w 3x) yields. heteroaryl 1y deliver 3y 50% 96% Remarkably, meta-substituted iodides, problematic reactions,44Catellani provided mono arylated (3p–3r) regioselectivity stereocontrol. Subsequently, bromides evaluated 4). group, ortho-substitution extended groups, (3A), nitro (3B), naphthyl (3C), corresponding (83%–97% 93%–98% Modifications para-position aniline moiety (3D), (3E), aldehyde (3F), alkenyl (3G), alkynyl (3H). serve useful handles manipulations. modifications ortho-position investigated. general, sterically bulky moieties ensuring process. Switching tert-butyl OTBS (3I), (3K–3M), TBS-protected (3J) produced enantiocontrol. almost no observed when hindered introduced (3N–3P). Nevertheless, react moiety, (3Q–3V) regioselectivities (90%–98% Particularly noteworthy showed chemoselectivity. contained reactive C(sp2)–X sites, selectively occurred electron-withdrawing (3D, 3U, 3V). absolute configuration 3h 3C unambiguously determined (R) X-ray crystallographic analysis, assigned analogy. understand aforementioned interesting substituent effect (DFT) calculations 5A). Just expected, reducing size ortho-substituent (3a versus 3aa). surprising uncover meta-substitution (blue part) significantly increased axis, same (3a? 3a, 3R 3R?, 3Q 3Q?). We related ground-state distortion ortho-substituent. DFT-optimized structures 3Q? 5A. shift substitution meta- ortho-position, steric repulsions ortho-methyl obviously distorted structure, reflected dihedral angle (12.2° 20.8°). destabilized ground state, (33.0 25.9 kcal/mol). These phenomena consistent co-workers, who decrease distortion.56Suzuki Hasegawa Relationship barriers 3,4-dihydroquinolin-2-one 3,4-dihydrobenzoquinolin-2-one.Tetrahedron Lett. 56: 132-135Crossref (9) experimentally measured (?G?exp), satisfying consistency computational value (?G?calc) (?G?exp = 30.8 kcal/mol ?G?calc 30.5 kcal/mol; see Figures S2 details). investigate (Figures 5B 5C). carefully monitored ee values during solution (92% MeCN temperatures 5B). stable 70°C, suggesting prepared racemization. removal TBS 3I tetra-n-butylammonium fluoride (TBAF) deprotected 3N 70% 5C; Scheme S3 Further isopropyl alcohol h complete calculated 26.7 kcal/mol, experimental results. indicate motif stabilizing configuration. Next, focused illustrating utilities method. scale-up experiment (3.0 mmol), 1.1 gram any 6A). It worth mentioning 71% recovery after workup. Then, aiming simultaneously, intriguing 6B). diiodides 4,4?-diiodo-3,3?-dimethyl-1,1?-biphenyl (1aa) 1,5-diiodonaphthalene (1ab) 2a smoothly delivered 3W 3Y distal enantioselectivities.57Harned A.M. From determination molecules: Horeau principle synthesis.Tetrahedron. 74: 3797-3841Crossref (23) 1aa single 3X formed 11% 90% 1ab used, meso-isomer 3Y' 3:1 ratio. Because very intermediates, appealing demonstrated. For example, 3V coupled arylboronic acids conditions58Martin Buchwald Suzuki-Miyaura cross-coupling employing dialkylbiaryl ligands.Acc. 1461-1473Crossref (1983) 6C). (4a 4b) uniquely possessing satisfactory diastereoselectivities (10–12:1 diastereomeric ratio [d.r.]). newly 4a, dictated proximal unconventional diastereoinduction (S) nuclear Overhauser (NOE) spectroscopy overall constituted serial stereoinduction event.59Park K.H. D.Y.-K. Programmed stereochemical morphinans.Chem. Sci. 7031-7037Crossref Finally, facile treatment 3L 3M sodium tert-butoxide triggered esterification 10- 11-membered macrolactones embedded axis60Parenty Moreau Campagne Macrolactonizations products.Chem. 106: 911-939Crossref (374) (5 6) 65% 46% respectively 6D). probe origins DFT mechanistic reactions.61Maestri Malacria Derat Of Ortho palladium/norbornene-catalyzed reactions: theoretical investigation.J. 2011; 133: 8574-8585Crossref (149) Scholar,62Chai D.I. Thansandote Mechanistic strained alkenes: origin regioselectivity.Chem. 8175-8188Crossref free-energy changes operative 7. bisligated Pd(0) species Cat, 1a TS8, generating Pd(II) 9. Subsequent insertion NBE N2? TS11 alkylated 12. Intermediate 12 underwent base-assisted arene TS13, ANP 14. 14, 15, secondary TS16 generate Pd(IV) 17. subsequent 19 fragments. 19, TS20 generated 21 released N2?. deprotonation 22 produce 24, TS25 regenerated catalyst. DFT-computed profile S5 S6. calculations, on-cycle resting state. rate-determining step TS18, 12, 28.3 kcal/mol. computations alternative considerations supplemental information. atropisomer series stereoselectivity-controlling steps, elaborated 8. 8A presents 3a. N2?-coordinated Pd(II)iodide 10, regioisomeric favor formation selectivity intrinsic frontier orbital interaction Pd(II). alkene olefin acts electrophilic component, nucleophilic component. LUMO (lowest unoccupied orbital) ?? smaller distribution position, position S7). Through step, transfers 14 (the competing formations cyclometallated [Figure S7] detailed discussion information). intermediates. induction fragment. revealed 8B, TS18 8.5 favorable TS34, strong preference (S)-axial highlighted disfavor contrast, do not exist thus favored S8] Afterward, controls irreversible step. states TS39 8C. fragment tBu amidyl TS39, results 2.7 (R)-C–N S9] agreement level configurations analysis. modular convergent wide range features include ability axes, economy, scalability. broader implications synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic asymmetric desymmetrization of N-arylmaleimides: efficient construction of both atom chirality and axial chirality.

The catalytic asymmetric Michael addition/desymmetrization reaction of N-(2-t-butylphenyl)maleimides with unprotected 3-substituted-2-oxindoles was successfully realized using a chiral N,N'-dioxide-Sc(III) complex, leading to succinimides with two kinds of stereogenic elements—atom chirality and axial chirality—in up to 99% yield, 99% ee and >19 : 1 d.r.

متن کامل

Discrimination of hydrogen-bonded complexes with axial chirality

The chiral self-discrimination of twelve molecules showing axial chirality has been studied. They included peroxides, hydrazines, carboxylic acids, amides, and allenes. The homo and heterochiral dimers of the selected compounds, that present two hydrogen bonds, have been studied by means of density functional theory ~B3LYP/6-311G**! and ab initio ~MP2/6-311G** and MP2/6-31111G**! methods. The e...

متن کامل

Inversion of axial chirality in coordinated bis-β-diketonato ligands.

Mononuclear and dinuclear ruthenium(III) complexes with bis-β-diketonato ligands (denoted by [Ru(acac)(2)(L-LH)] and [Ru(acac)(2)(L-L)Ru(acac)(2)], respectively) were synthesized, where acac, L-LH(-) and L-L(2-) denote acetylacetonato, monoprotonated and unprotonated bis-β-diketonato ligands, respectively. The following three ligands were used as the bis-β-diketonato ligand (L-L(2-)): 1,2-diace...

متن کامل

Light-driven molecular switches with tetrahedral and axial chirality.

Two light-driven molecular switches with tetrahedral and axial chirality were synthesized, which can induce a helical superstructure in an achiral liquid crystal host and dynamically phototune it to achieve reversible reflection color.

متن کامل

Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers.

A dissymmetrically substituted orthogonal BODIPY dimer and an orthogonal BODIPY trimer exist as two stable conformers, which are in fact atropisomeric enantiomers. The racemic mixture can be separated by HPLC using a chiral stationary phase. These enantiomeric derivatives hold great potential as chiral agents in asymmetric synthesis, fluorogenic/chromogenic sensing, and biological applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.04.005